Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Coordinated control model for freeway mainline bottleneck zone
MA Ming hui1,2, YANG Qing fang1,2,3, LIANG Shi dong2, XING Ru ru2
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
2. College of Transportation, Jilin University, Changchun 130022, China;
3.Jilin Province Key Laboratory of Road Traffic, Jilin University, Changchun 130022, China
Download:   PDF(756KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new coordinated control model was proposed aiming to solve the problems of  the heavy traffic congestion on the bottleneck of freeway, the increase of total delay and the decline of  the traffic efficiency, etc. The congested degree indexes were formulated based on the analysis of main characters of the traffic operation and congestion in freeway mainline bottleneck zone. The foundation of congestion degree indexes was the queue length of the freeway bottleneck zone upstream mainline and ramp. The coordinated control model was proposed considering the priority for vehicles on the ramp and the mainline of bottleneck zone upstream. The coordinated control method aimed to improve the traffic volume and  the average travel speed. The effectiveness of the coordinated control model was verified by the contrastive analysis of three control cases. Results show that the proposed coordinated control model  can effectively improve the maximum traffic capability. Compared with the cases of no control and  mainline control, the maximum traffic capability was enhanced by 5.04% and 4.09%, respectively.



Published: 15 October 2015
CLC:  U 491  
Cite this article:

MA Ming hui, YANG Qing fang, LIANG Shi dong, XING Ru ru. Coordinated control model for freeway mainline bottleneck zone. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1700-1706.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.09.012     OR     http://www.zjujournals.com/eng/Y2015/V49/I9/1700


高速公路主线瓶颈区域的协调控制模型

针对高速公路主线瓶颈区域交通拥挤严重、道路通行效率下降以及延误增加等问题,提出协调控制模型.分析高速公路主线瓶颈区域交通运行和交通拥挤特点,根据瓶颈区域上游主线路段和匝道的车辆排队长度参数构建拥挤程度指标.考虑瓶颈区域上游匝道和主线车辆通行权分配问题,构建以提高道路总体通行交通量和平均行程速度为最优控制目标的高速公路主线瓶颈区域的协调控制模型.采用3种控制方案对比分析的方法对协调控制模型的有效性进行验证.实验结果表明:所提出的协调控制模型能够有效提升道路的最大通行交通量;相对于无控制和主线控制方案,最大通行交通量分别提升5.04%和4.09%. 

[1] COIFMAN B, KIM S. Extended bottlenecks, the fundamental relationship, and capacity drop on freeways [J]. Transportation Research Part A: Policy and Practice, 2011, 45(9): 980-991.
[2] 张枭雄. 高速公路入口匝道控制算法的仿真评价与优化 [D].长春:吉林大学,2005.
ZHANG Xiao xiong. Simulation evaluation and optimizing of on ramp control algorithm on freeway [D]. Changchun: Jilin University, 2005.
[3] 杨庆芳,马明辉,梁士栋,等.  高速公路瓶颈区域可变限速阶梯控制方法[J] .西南交通大学学报, 2015, 50(2):354-360.
YANG Qing fang,  MA Ming hui, LIANG Shi dong, et al. Stair like control strategies of variable speed limit for bottleneck regions on freeway [J]. Journal of Southwest Jiaotong University, 2015, 50(2): 354-360.
[4] HEGYI A, DE SCHUTTER B, HELENDOOM H. Model predictive control for optimal coordination of ramp metering and variable speed limits [J]. Transportation Research Part C: Emerging Technologies, 2005, 13(3): 185-209.
[5] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M. Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits [J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 209-221.
 [6]  朱炯. 高速公路入口匝道与路段可变限速控制方法研究及实现[D]. 杭州: 浙江工业大学, 2012.
ZHU Jiong. Research and implementation on ramp metering and variable speed limit for highway [D].Hangzhou: Zhejiang University of Technology, 2012.
[7] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M, et al. Optimal motorway traffic flow control involving variable speed limits and ramp metering [J]. Transportation Science, 2010, 44(2): 238-253.
[8] KOTSIALOS A, PAPAGEORGIOUM, MANGEAS M, et al. Coordinated and integrated control of motorway networks via non linear optimal control [J]. Transportation Research Part C: Emerging Technologies, 2002, 10(1): 65-84.
[9] GRUMERT E, TAPANI A. Impacts of a cooperative variable speed limit system [J]. Procedia Social and Behavioral Sciences, 2012, 43: 595-606.
[10] PAPAGEORGIOU M, KOSMATOPOULOS E, PAPAMICHAIL I. Effects of variable speed limits on motorway traffic flow [J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2047(1): 37-48.
[11] LIN P W, KANG K P, CHANG G L. Exploring the effectiveness of variable speed limit controls on highway work zone operations [J]. Journal of intelligent transportation systems: technology, planning, and operations, 2004, 8(3): 155-168.
[12] 余凯.不利条件下高速公路动态限速方法研究[D].武汉:武汉理工大学, 2010.
YU Kai. Research on the method of setting variable speed limits on highway under adverse conditions [D]. Wuhan: Wuhan University of Technology, 2010.
[13] CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M,  et al. Optimal mainstream traffic flow control of large scale motorway networks [J]. Transportation Research Part C: Emerging Technologies, 2010, 18(2): 193-212.
 [14] KOTSIALOS A, PAPAGEORGIOU M, DIAKAKI C, et al. Traffic flow modeling of large scale motorway networks using the macroscopic modeling tool METANET [J]. IEEE Transactions on Intelligent Transportation Systems,  2002, 3(4): 282-292.
[15] 梁士栋. 城市区域交通状态判别方法研究[D]. 长春:吉林大学,2014.
LIANG Shi dong. Research on the identification method of urban regional traffic state [D]. Changchun: Jilin University, 2014.
[16] TOSIEK J. The eigenoalue equation for a 1 D Hamilton function in deformation quantization[J]. Physics Letters A, 2012,376(28):2023-2031.

[1] NI Ling-lin, ZHANG Shuai-chao, CHEN Xi-qun. Spatial effects of urban travel using cellular signaling data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 887-895.
[2] QU Zhao-wei, CAO Ning-bo, CHEN Yong-heng, BAI Qiao-wen, KANG Meng, CHEN Ming-tao. Leading pedestrian intervals modeling at signalized intersections[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 538-544.
[3] WANG Fu jian, GONG Cheng yu, MA Dong fang, Guo Wei wei, WANG Dian hai. Signal coordination control for traffic bottleneck using OD data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 273-278.
[4] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 297-303.
[5] YU Qian, LI Tie zhu, REN Yan ming. Influence of passenger load on diesel bus emission[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 2009-2017.
[6] FU Feng jie, GONG Yue, WANG Dian hai, MA Dong fang. Data quality analysis of link travel time based on HD smart gate[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1761-1767.
[7] WANG Li,ZHANG Li li,PAN Ke,LI Zheng xi. Traffic signal switching control approach based on state control ability analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1266-1275.
[8] LI Ming da,KUI Hai lin,MEN Yu zhuo,BAO Cui zhu. Starting control of platooning trucks based on actual gearshift schedule[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 887-892.
[9] LOU Qi feng, MA Xiao long, YE Ying, MEI Zhen yu. Combined impact of parking charge and supply policy based on travel cost[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 257-264.
[10] MO Yuan fu, YU De xin, SONG Jun, GUO Ya juan. Beacon message generating strategy based on channel load preset threshold in VANET environment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 21-26.
[11] WANG Wei dong, LI Jun jie, WANG Jing,FU Qing xiang, KANG Wen hong. Highway traffic efficiency evaluation based on unascertained measure model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 48-54.
[12] LI Qing, HU Zhi hua. Reliable path selection after disaster based on multi objective genetic algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 33-40.
[13] ZHOU Dan, MA Xiao long, JIN Sheng, WANG Dian hai. Modeling influencing factors of vehicle passing rate #br# in mixed bicycle traffic flow[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1672-1678.
[14] WANG Fu-jian, DAI Mei-wei, SUN Ling-tao, JIN Sheng. Mixed distribution model of vehicle headway based on multiclass car following[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1288-1294.
[15] ZHAO Wei-ming, WANG Dian-hai, ZHU Wen-tao, DAI Mei-wei. Optimization of time-of-day breakpoints based on improved NJW algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2259-2265.